Abstract

The foil–air bearing (FAB) enables the emergence of oil-free turbomachinery. However, its potential to introduce undesirable nonlinear effects necessitates a reliable means for calculating the dynamic response. The computational burden has hitherto been alleviated by simplifications that compromised the true nature of the dynamic interaction between the rotor, air film and foil structure, introducing the potential for significant error. The overall novel contribution of this research is the development of efficient algorithms for the simultaneous solution of the state equations. The equations are extracted using two alternative transformations: (i) Finite Difference (FD); and (ii) a novel arbitrary-order Galerkin Reduction (GR) which does not use a grid, considerably reducing the number of state variables. A vectorized formulation facilitates the solution in two alternative ways: (i) in the time domain for arbitrary response via implicit integration using readily available routines; and (ii) in the frequency domain for the direct computation of self-excited periodic response via a novel Harmonic Balance (HB) method. GR and FD are cross-verified by time domain simulations which confirm that GR significantly reduces the computation time. Simulations also cross-verify the time and frequency domain solutions applied to the reference FD model and demonstrate the unique ability of HB to correctly accommodate structural damping.

Highlights

  • Published in: Journal of Sound and Vibration Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version

  • General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights

  • Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim

Read more

Summary

Introduction

Link to publication record in Manchester Research Explorer Citation for published version (APA): Bonello, P., & Pham, H. The efficient computation of the nonlinear dynamic response of a foil-air bearing rotor system.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.