Abstract

The identification of flowering plants using DNA barcoding proposed in last decades has slowly gained ground in Africa, where it has been successfully used to elucidate the systematics and ecology of several plant groups, and to understand their evolutionary history. Existing inferences on the effectiveness of DNA barcoding to identify African trees are mostly based on lowland forests, whereas adjacent montane forests significantly differ from the latter floristically and structurally. Here, we tested the efficiency of chloroplast DNA barcodes (rbcLa, matK, and trnH-psbA) to identify Afromontane Forest tree species in a 20.28 ha permanent plot in Ngel Nyaki, Taraba state, Nigeria. We collected, identified, and vouchered 274 individuals with diameter at breast height ≥ 1 cm belonging to 101 morphospecies, 92 genera, and 48 families. rbcLa and matK used alone or in combination performed better than in lowland forests, with the best species discrimination obtained with the two-locus combination of matK + rbcLa. The intragenic spacer trnH-psbA was too variable to align and could not be tested using the genetic distance method employed. Classic DNA barcode can be a powerful tool to identify Afromontane tree species, mainly due to the non-prevalence in these communities of species—rich genera (low species-to-genus ratio) that constitute the biggest challenge of DNA barcoding of flowering plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call