Abstract

As one of the most promising of the alternative energy sources, there are many advantages of solar energy: low carbon emissions; abundant and secure supplies; favoring developing countries; being cheap to run and maintain. Solar photovoltaic cells convert sunlight into electricity. This is achieved using semiconductors and some complicated physics. This paper explains how it works. The solar source of light energy is described and quantified, along with a review of the basic equations of photovoltaic device physics. Particular attention is given to efficiency limits for single-junction, tandem solar cells and triple junction solar cells. The efficiency of single-junction cells is presented as a function of the energy gap, and the efficiency of tandem cells is presented as a function of the energy gap of top and bottom cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.