Abstract

The purpose of this study was to investigate the feasibility of lung wedge resection by combining 3-dimensional (3D) image analysis with transbronchial indocyanine green (ICG) instillation, in order to delineate the intended area for resection. From December 2017 to July 2020, 28 patients undergoing wedge resection (17 primary lung cancers, 11 metastatic lung tumours) were enrolled, and fluorescence-guided wedge resection was attempted. Virtual sublobar resections were created preoperatively for each patient using a 3D Image Analyzer. Surgical margins were measured in each sublobar resection simulation in order to select the most optimal surgical resection area. After transbronchial instillation of ICG, near-infrared thoracoscopic visualization allowed matching of the intended area for resection to the virtual sublobar resection area. To investigate the effectiveness of ICG instillation, the clarity of the ICG-florescent border was evaluated, and the distance from the true tumour to the surgical margins was compared to that of simulation. Mean tumour diameter was 12.4 ± 4.3 mm. The entire targeted tumour was included in resected specimens of all patients (100% success rate). The shortest distances to the surgical margin via 3D simulation and by actual measurement of the specimen were11.4 ± 5.4 and 12.2 ± 4.1 mm, respectively (P = 0.285) and were well correlated (R2 = 0.437). While all specimens had negative malignant cells at the surgical margins, one loco-regional recurrence was observed secondary to the dissemination of neuroendocrine carcinoma. ICG-guided lung wedge resection after transbronchial ICG instillation and preoperative 3D image analysis allow for adequate negative surgical margins, providing decreased risk of local recurrence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.