Abstract
The aim of the study was to evaluate the efficacy of traditional supervised learning (SL) and semi-supervised learning (SSL) in the classification of mandibular third molars (Mn3s) on panoramic images. The simplicity of preprocessing step and the outcome of the performance of SL and SSL were analyzed. Total 1625 Mn3s cropped images from 1000 panoramic images were labeled for classifications of the depth of impaction (D class), spatial relation with adjacent second molar (S class), and relationship with inferior alveolar nerve canal (N class). For the SL model, WideResNet (WRN) was applicated and for the SSL model, LaplaceNet (LN) was utilized. In the WRN model, 300 labeled images for D and S classes, and 360 labeled images for N class were used for training and validation. In the LN model, only 40 labeled images for D, S, and N classes were used for learning. The F1 score were 0.87, 0.87, and 0.83 in WRN model, 0.84, 0.94, and 0.80 for D class, S class, and N class in the LN model, respectively. These results confirmed that the LN model applied as SSL, even utilizing a small number of labeled images, demonstrated the satisfactory of the prediction accuracy similar to that of the WRN model as SL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.