Abstract

The effects of mild-temperature hyperthermia (MTH) and metformin, alone or in combination, on the efficacy of high-dose hypofractionated radiation against experimental tumors were investigated. FSaII fibrosarcoma grown subcutaneously in the hind legs of C3H mice was irradiated with a single 15 Gy dose using a 60Co irradiator. The radio frequency capacitive method was used to heat the tumors at 41.0°C for 30 min. Metformin was intraperitoneally (i.p.) administered daily to tumor-bearing mice at a dose of 150 mg/kg. The expression levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and programmed cell death-ligand 1 (PD-L1) were determined by immunohistochemical staining of the excised tumor tissues. The apoptosis of tumor cells in vivo was quantified by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and cleaved caspase-3 staining of the excised tumor tissues. Irradiation of tumors markedly increased the expression of HIF-1α, VEGF, and PD-L1, and MTH and metformin used either alone or in combination significantly abrogated the radiation-induced upregulation of these proteins. MTH and metformin alone or combined increased the radiation-induced apoptosis in tumor cells and enhanced the radiation-induced suppression of tumor growth. The findings indicated that the increased tumor response to 15 Gy irradiation by MTH and metformin alone or in combination was due, in part, to the abrogation of the radiation-induced upregulation of HIF-1α and its downstream targets VEGF and PD-L1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call