Abstract

Eutrophication in lakes and reservoirs has prompted interest in using sediment capping technology to reduce the sediment contribution to internal nutrient loading. One such sediment capping technology is Phoslock®, a lanthanum-embedded clay, which can bind phosphate at the sediment surface and limit its diffusion into the water column. However, in well-oxygenated lakes, naturally occurring iron can bind phosphate by a similar mechanism. We sought to test the efficacy of Phoslock® in limiting phosphate (PO43−) fluxes relative to untreated iron-rich lake sediment under conditions of bottom-water oxia and anoxia through laboratory batch core incubations of intact sediment cores from Jordan Lake, a reservoir in central North Carolina. We found that Phoslock® decreased phosphate fluxes relative to the control under anoxic conditions (7.5 ± 9.5 vs. 236 ± 74 µmol PO43−•m−2•d−1), but provided no benefit relative to the control when the water column was oxygenated (4.5 ± 4.3 vs. 7.0 ± 11.4 µmol PO43−•m−2•d−1). We also found that Phoslock® itself can act as a source of NH4+ to Jordan Lake waters. Applied at recommended levels to the whole lake, Phoslock® addition would result in a pulse increase in water column NH4+ concentrations of approximately 2.6 ± 0.8 μM (an increase of 10 to 275% compared to ambient).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.