Abstract

BackgroundAlthough short-segment posterior spinal fixation (SSPSF) has shown promising clinical outcomes in thoracolumbar burst fractures, the treatment may be prone to a relatively high failure rate. This study aimed to assess the effectiveness of machine learning models (MLMs) in predicting factors associated with treatment failure in thoracolumbar burst fractures treated with SSPSF.MethodsA retrospective review of 332 consecutive patients with traumatic thoracolumbar burst fractures who underwent SSPSF at our institution between May 2016 and May 2023 was conducted. Patients were categorized into two groups based on treatment outcome (failure or non-failure). Potential risk factors for treatment failure were compared between the groups. Four MLMs, including random forest (RF), logistic regression (LR), support vector machine (SVM), and k-nearest neighborhood (k-NN), were employed to predict treatment failure. Additionally, LR and RF models were used to assess factors associated with treatment failure.ResultsOf the 332 included patients, 61.4% were male (n = 204), and treatment failure was observed in 44 patients (13.3%). Logistic regression analysis identified Load Sharing Classification (LSC) score, lack of index level instrumentation, and interpedicular distance (IPD) as factors associated with treatment failure (P < 0.05). All models demonstrated satisfactory performance. RF exhibited the highest accuracy in predicting treatment failure (accuracy = 0.948), followed by SVM (0.933), k-NN (0.927), and LR (0.917). Moreover, the RF model outperformed other models in terms of sensitivity and specificity (sensitivity = 0.863, specificity = 0.959). The area under the curve (AUC) for RF, LR, SVM, and k-NN was 0.911, 0.823, 0.844, and 0.877, respectively.ConclusionsThis study demonstrated the utility of machine learning models in predicting treatment failure in thoracolumbar burst fractures treated with SSPSF. The findings support the potential of MLMs to predict treatment failure in this patient population, offering valuable prognostic information for early intervention and cost savings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call