Abstract

The effects of the thermophysical properties of the working fluid on the performance of a microheat pipe of triangular cross section are investigated. For this purpose, five different working fluids are selected: water, hepthane, ammonia, methanol, and ethanol. For operating temperatures ranging from 20°Cto100°C, it is found that the behavior of the heat transport capacity is dominated by a property of the working fluid, which is equal to the ratio of the surface tension and dynamic viscosity σ∕μl. This property has the same dimension as velocity and can be interpreted as a measure of the working fluid’s rate of circulation, which can be provided by capillarity after overcoming the effect of viscosity. Of the five working fluids selected, ammonia is preferable for operating temperatures below 50°C since it yields the highest heat transport capacity; however, water is the preferred working fluid for temperatures above 50°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.