Abstract

The development of hydrophilic surface coatings for enhanced wetting characteristics has led to improvement in heat transfer metrics like impinging droplet vaporization time and the heat transfer coefficient. Hydrothermal synthesis, a method of developing hydrophilic surfaces, has been previously shown to produce high performing heat transfer surfaces on copper substrates [1]. Our study applied this production method to aluminum substrates, which have the advantage of being cheaper, lighter, and a more widely used for heat sinks than copper. Previous experiments have shown that water droplets on ZnO nanostructure coated surfaces, at low superheats, evaporate via thin film evaporation rather than nucleate boiling. This leads to heat transfer coefficients as much as three times higher than nucleate boiling models for the same superheat. Our nanocoated aluminum surfaces exhibit superhydrophilicity with an average droplet liquid film thickness of 20–30 microns, which can produce heat transfer coefficients of over 25 kW/m2K. This study discusses characterization of ZnO nanostructured aluminum surfaces to better understand the related mechanisms which lead to such high heat transfer performance. All ZnO nanostructured aluminum surfaces produced for this study exhibited superhydrophilicity, with sessile droplet contact angles of less than 5 degrees. The challenge of achieving accuracy for such low contact angles led to the development of a new wetting metric related to the droplet’s wetted area on a surface rather than the contact angle. This new metric is predicated on the the fact that heat transfer performance is directly related to this wetted area, thickens, and shape of the expanding droplet footprint. Shape irregularity of droplets on these superhydrophilic surfaces is discussed in this study, where there appears to be advantages to irregular spreading compared with surfaces that produce symmetric radial spreading. One form of irregular spreading consists of liquid droplets spreading out both on top of the surface and within the microstructure of the surface coating. The liquid within the microstructure forms films less than 5 microns thick, making local heat transfer coefficients of greater than 100 kW/m2K possible. SEM microscope imaging provided additional insight to the underlying mechanisms which cause these surfaces to produce such exceptional spreading as well as irregular spreading, resulting in very good heat transfer performance. Experimental work was coupled with computational analysis to model the contact line of the droplet footprint. Image processing of experimental photos helps to analyze spreading characteristics, which can be directly related to heat transfer due to film thickness at various points during spreading. Approaches used to characterize these superhydrophilic surfaces advance understanding of the connections between nanoscale structural elements and macroscale performance characteristics in heat transfer. This understanding can reveal key insights for developing even better high performance surfaces for a broad range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call