Abstract
Ceratomyxa shasta is a myxozoan parasite identified as a contributor to salmon mortality in the Klamath River, USA. The parasite has a complex life cycle involving a freshwater polychaete, Manayunkia speciosa and a salmonid. As part of ongoing research on how environmental parameters influence parasite establishment and replication, we designed a laboratory experiment to examine the effect of water flow (velocity) on completion of the C. shasta infectious cycle. The experiment tested the effect of two water velocities, 0.05 and 0.01 m s(-1), on survival and infection of M. speciosa as well as transmission to susceptible rainbow trout and comparatively resistant Klamath River Chinook salmon. The faster water velocity facilitated the greatest polychaete densities, but the lowest polychaete infection prevalence. Rainbow trout became infected in all treatments, but at the slower velocity had a shorter mean day to death, indicating a higher infectious dose. Infection was not detected in Chinook salmon even at a dose estimated to be as high as 80,000 actinospores per fish. The higher water velocity resulted in lower C. shasta infection prevalence in M. speciosa and decreased infection severity in fish. Another outcome of our experiment is the description of a system for maintaining and infecting M. speciosa in the laboratory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.