Abstract
BackgroundThis study was designed to investigate the effects of the vitamins C and B12 on the regulation of human nasal ciliary beat frequency (CBF).MethodsHuman nasal mucosa was removed endoscopically and nasal ciliated cell culture was established. Changes of CBF in response to different concentrations of vitamin C or vitamin B12 were quantified by using high-speed (240 frames per second) digital microscopy combined with a beat-by-beat CBF analysis.ResultsAt the concentrations of 0.01% and 0.10%, vitamin C induced an initial increase, followed by a gradual decrease of CBF to the baseline level, while 1.00% vitamin C induced a reversible decrease of CBF. Vitamin B12, at the concentrations of 0.01% and 0.10%, did not influence CBF during the 20-min observation period, while a 1.00% vitamin B12 treatment caused a time-dependent but reversible decrease of CBF.ConclusionsTreatment with vitamin C or vitamin B12 caused a concentration-dependent but reversible decrease of CBF in cultured human nasal epithelial cells. Therefore, it is necessary to choose a concentration that is safe, effective, and non-ciliotoxic when applying these drugs topically in the nasal cavity.
Highlights
This study was designed to investigate the effects of the vitamins C and B12 on the regulation of human nasal ciliary beat frequency (CBF)
The CBF on the 1st day is significantly lower than the other days; in addition, the CBFs from the 3rd to 14th day are most close to the CBF of in vivo nasal epithelial cells, which is from 9 to 15 Hz
Our results showed that CBF from the 3rd to 14th day is most close to the CBF of in vivo nasal epithelial cells, so we choose cell cultures from 3rd to 14th days for measurements of CBF in response to exogenous drugs
Summary
This study was designed to investigate the effects of the vitamins C and B12 on the regulation of human nasal ciliary beat frequency (CBF). Intranasal administration as a non-invasive route for drug delivery has generated much interest within the pharmaceutical industry in recent years. The nasal mucosa has many advantages as a potential site for both topical and systemic drug delivery, which include a large surface area for delivery, rapid onset of therapeutic effect, potential for central nervous system delivery, no first-pass metabolism, and, owing to its non-invasive nature, is likely to maximize patient comfort and compliance [1]. Coordinated beating of epithelial cell cilia with a normal pattern and frequency, which induces clearance of mucus from the airway, is the driving force of respiratory mucociliary transport. Impairment of the nasal mucociliary transport system can produce serious
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.