Abstract

Our prior work provides evidence that visual feedback distortion drives an implicit adaptation; a gradual distortion of visual representation of step length modulated subjects' step lengths away from symmetry. To further explore the effect of the visual feedback distortion on unconscious change in step symmetry, we investigated whether such adaptation would occur even in the presence of altered limb mechanics by adding mass to one side of the leg. 26 subjects performed three 8-min trials (weight only, weight plus visual feedback, and weight plus visual feedback distortion) of treadmill walking. During the weight only trial, the subjects wore a 5lb mass around the right ankle. The modification of limb inertia caused asymmetric gait. The visual feedback showing right and left step length information as bar graphs was displayed on a computer screen. To add visual feedback distortion, we increased the length of one side of the visual bars by 10% above the actual step length, and the visual distortion was implemented for the side that took longer in response to the added mass. We found that even when adjustments were made to unilateral loading, the subjects spontaneously changed their step symmetry in response to the visual distortion, which resulted in a more symmetric gait. This change may be characterized by sensory prediction errors, and our results suggest that visual feedback distortion has a significant impact on gait symmetry regardless of other conditions affecting limb mechanics. A rehabilitation program employing visual feedback distortion may provide an effective way to restore gait symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call