Abstract

Understanding the interactions among the functional groups of living organisms within ecosystems is a main challenge in ecology. This question is particularly important in relation to the interactions between the above- and below-ground components of terrestrial ecosystems. We investigated the effects of macro- (geographic position and mire size) and micro-environmental (pH, water table depth, water mineralization and temperature) characteristics and vegetation composition (both vascular plants and bryophytes) on the species structure of testate amoeba assemblages in eight Sphagnum-dominated mires across the Northern Caucasus Mountains (Russia). In total, 97 testate amoeba species from 34 genera were identified. A multiple factor analysis indicated the strongest relationships between the species structure of the testate amoeba assemblages and the local vegetation, especially bryophytes, whereas the interaction with the micro-environmental characteristics was the weakest. Among the micro-environmental data, the strongest effects on the species composition of all the assemblages were detected for the pH followed by the water table depth and water temperature. The variance partitioning of the species structure of the testate amoeba assemblages in response to the abiotic and biotic data indicated that most of the variance was related to the bryophyte and vascular plant assemblages, whereas the contribution of the environmental data was lower. Moreover, most of the effects were highly related to each other, so that the proportion of the jointly explained variation was high, whereas the individual effects were much lower.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call