Abstract

A mathematical model will be analyzed in order to study the effects of variables viscosity and thermal conductivity on unsteady heat and mass transfer over a vertical wavy surface in the presence of magnetic field numerically by using a simple coordinate transformation to transform the complex wavy surface into a flat plate. The fluid viscosity is assumed to vary as a exponential function of temperature and thermal conductivity is assumed to vary linearly with temperature. An implicit marching Chebyshev collocation scheme is employed for the analysis. Numerical solutions are obtained for different values of variable viscosity, variable thermal conductivity and MHD variation parameter. Numerical results show that, variable viscosity, variable thermal conductivity and MHD variation parameter have significant influences on the velocity, temperature and concentration profiles as well as for the local skin friction, Nusselt number and Sherwood number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call