Abstract

The effects of the quality of the vacuum on the epitaxy of aluminum on (100) gallium arsenide have been investigated. It was found that leaving the ion gauge running during the cooling down of the GaAs prior to the deposition of the Al and the presence of a helium cryopump both affected the nature of the epitaxy and the height of the resulting Schottky barrier. Reproducible results were only obtained with the ion gauge off and the cryopump on. The Al film was found to take up the (100) orientation irrespective of the reconstruction of the GaAs surface [c(2×8), c(4×4), or (4×6)]. The height of the Schottky barrier on n-type GaAs was 0.77±0.01 eV, and was independent of the GaAs reconstruction. The I-V characteristics were the most nearly ideal that have been reported, a plot of log{I/[1−exp(−qV/kT)]} vs V being linear over the whole voltage range from +0.5 to −1.0 V, with an ideality factor of 1.01 which can be explained solely in terms of image-force lowering. The barrier height on p-type GaAs was 0.64±0.01 eV, also irrespective of the GaAs reconstruction, so that φbn+φbp is equal to the band gap within the experimental error.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call