Abstract

Undercutting is a fusion welding defect that appears as a groove at the weld metal's toe. An undercut discontinuity forms when welding, particularly when the current is applied at an extremely rapid rate. It decreases the static and fatigue strength of the weld and produces stress concentration at the welding zone. The height of the reinforcement, the weld bead's contact angle, the undercut's breadth, depth, length, and root radius, as well as other factors, affect the stress concentration factor's size. In this study, two mild steel plates with a 20 mm thickness were welded together using gas metal arc welding. Each test plate was machined to have a 30° single bevel groove angle prior to welding. The butt welded plate underwent radiographic NDT testing. A weldment free of defect was created. The weldment was machined into typical test specimens for tensile strength. An undercut defect was simulated by drilling a groove through each tensile test sample. Grooves had different depths and lengths. After that, samples were put through a tensile test. The test findings allowed for the identification of the impacts of groove shape on tensile strength, ductility, and static stress concentration factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.