Abstract

We examined the effect of supplemental UV-B radiation (290-320 nm) on photosynthetic characteristics of different aged needles of 3-year-old, field-grown loblolly pine (Pinus taeda L.). Needles in four age classes were examined: I, most recently fully expanded, year 3; II, first flush, year 3; III, final flush, year 2; and IV, oldest needles still present, year 2. Enhanced UV-B radiation caused a statistically significant decrease (6%) in the ratio of variable to maximum fluorescence (F(v)/F(m)) following dark adaptation only in needles from the youngest age class, suggesting transient damage to photosynthesis. However, no effects of enhanced UV-B radiation on other instantaneous measures of photosynthesis, including maximum photosynthesis, apparent quantum yield and dark respiration, were seen for needles of any age. Foliar nitrogen concentration was unaffected by UV-B treatment. However, the (13)C/(12)C carbon isotope ratios (delta(13)C-a time integrated measure of photosynthetic function) of needles in age classes II and IV were 3% (P < 0.01) and 2% (P < 0.05) more negative, respectively, in treated plants than in control plants. Exposure to enhanced UV-B radiation caused a 20% decrease in total biomass and a 4% (P < 0.05), 25% (P < 0.01), and 9% (P < 0.01) decrease in needle length of needles in age classes I, II, and IV, respectively. The observed decreases in delta(13)C, and F(v)/F(m) of the needles in the youngest needle age class suggest subtle damage to photosynthesis, although overall growth reductions were probably a result of decreased total leaf surface rather than decreased photosynthetic capacity. Needles of age class IV had lower light- and CO(2)-saturated maximum photosynthetic rates (39%), lower dark respiration (34%), lower light saturation points (37%), lower foliar nitrogen concentration (28%), and lower delta(13)C (14%) values than needles of age class I. Apparent quantum yield and F(v)/F(m) did not change with needle age. The observed changes in photosynthesis and foliage chemical composition with needle age are consistent with previous studies of coniferous trees and may represent adaptations of older needles to shaded conditions within the canopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call