Abstract

There has been little research conducted on how ultrasonic cavitation may affect glass dissolution. The focus of this study was to examine how the mechanisms and kinetics of glass dissolution may change in a system that included ultrasonication. Experiments were conducted on lithium disilicate glass in deionized water at 50 °C between 1 and 7.5 h. Results showed that the erosion from ultrasonication affected the kinetics of glass dissolution. Samples with erosion had 2–3 × more dissolution compared to samples without erosion. The change in dissolution was thought to be partly caused by an increase in the surface area of the sample to volume of solution (SA/V) ratio due to the roughening of the surface and release of particulates and a reduction in the size of the depleted layer due to erosion. Stereoscopic 3D reconstruction of eroded samples was used to calculate the increase in surface area due to erosion. Type 2 surface areas (exfoliation mixed with normal leaching) were roughly 3–6% greater while Type 3 surface areas (heavy roughening of surface) were roughly 29–35% greater than the surfaces areas from Type 1 surfaces (normal leaching).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.