Abstract
The effects of intravenous infusion of ornithine-vasopressin (OVP) and desamino-D-arginine-vasopressin (dDAVP) were studied in normal and hydrated Merino sheep. In normal sheep, OVP resulted in a diuresis, increased urinary sodium and potassium excretion, and a fall in the plasma potassium concentration. Renal plasma flow remained constant but glomerular filtration rate and filtration fraction rose markedly. dDAVP in normal sheep was antidiuretic, but its only significant effect was a small decrease in plasma osmolality. In the hydrated sheep OVP was antidiuretic and resulted in increased urinary excretion of sodium and potassium, and a fall in the plasma potassium level. Renal plasma flow fell, but glomerular filtration and filtration fraction tended to rise. dDAVP in the hydrated sheep was also antidiuretic but urinary sodium and potassium excretion was reduced. Renal plasma flow and glomerular filtration fell, with a small decrease in filtration fraction. These results suggest that the diuretic effect in normal sheep and the electrolyte-excreting effects in both normal and hydrated sheep of OVP are related to the increase in glomerular filtration, which in turn is dependent on the vasopressor activity of the hormone. The increase in glomerular filtration caused by OVP is due to an increase in the filtration fraction of an unchanged renal plasma flow, which could be brought about by an increase in renal efferent arteriolar tone. The effects of hydration of the sheep were the conventional increased urine flow, decreased urine osmolality and decreased solute-free water reabsorption. Sodium and potassium excretion rose slightly and plasma osmolality fell. Renal plasma flow and glomerular filtration both increased with little change in filtration fraction. These effects could be brought about by suppression of endogenous vasopressin and a decrease in both afferent and efferent renal arteriolar tone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of Experimental Physiology and Cognate Medical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.