Abstract
Transcranial direct current stimulation (tDCS) is increasingly being used to affect the neurological conditions with deficient intracortical synaptic activities (i.e. Parkinson's disease and epilepsy). In addition, it is suggested that the lasting effects of tDCS on corticospinal excitability (CSE) have intracortical origin. This systematic review and meta-analysis aimed to examine whether tDCS has any effect on intracortical circuits. Eleven electronic databases were searched for the studies investigating intracortical changes induced by anodal (a) and cathodal (c) tDCS, in healthy individuals, using two paired-pulse transcranial magnetic stimulation (TMS) paradigms: short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Additionally, motor-evoked potential (MEP) size alterations, assessed by single-pulse TMS, were extracted from these studies to investigate the probable intracortical origin of tDCS effects on CSE. The methodological quality of included studies was examined using Physiotherapy Evidence Database (PEDro) and Downs and Black's (D&B) assessment tools. Thirteen research papers, including 24 experiments, were included in this study scoring good and medium quality in PEDro and D&B scales, respectively. Immediately following anodal tDCS (a-tDCS) applications, we found significant decreases in SICI, but increases in ICF and MEP size. However, ICF and MEP size significantly decreased, and SICI increased immediately following cathodal tDCS (c-tDCS). The results of this systematic review and meta-analysis reveal that a-tDCS changes intracortical activities (SICI and ICF) toward facilitation, whereas c-tDCS alters them toward inhibition. It can also be concluded that increases and decreases in CSE after tDCS application are associated with corresponding changes in intracortical activities. The results suggest that tDCS can be clinically useful to modulate intracortical circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.