Abstract

BackgroundNeuropathic pain (NP) in individuals with spinal cord injury (SCI) is both common and highly refractory to treatment. Primary motor cortex stimulation can relieve pain by interrupting the transmission of noxious information of descending pain modulatory systems including the anterior cingulate cortex (ACC). Previous research has shown that transcranial direct current stimulation (tDCS) can produce pain relief in individuals with NP. However, the underlying mechanisms for these effects are not yet understood. Research findings suggest the possibility that changes in brain metabolite concentrations produced by tDCS might explain some of these effects. For example, previous research has shown that SCI-related NP is associated with elevated levels of glutamine combined glutamate (Glx) per creatine (Glx/Cr). In addition, decreased N-acetylaspartate (NAA) has been observed in the ACC in individuals with chronic pain.MethodsWe used magnetic resonance spectroscopy (MRS) to study changes in NAA and Glx levels in the ACC after tDCS treatment. Ten patients with SCI with NP were given five daily anodal tDCS sessions, and an MRS evaluation was performed before and after treatment.ResultsThe results showed treatment-related reductions in pain, and increases in both Glx/Cr and NAA/Cr in the ACC. The observed increase in NAA/Cr is consistent with the possibility that tDCS improves the descending pain modulation system by increasing the neuronal activity in the ACC.ConclusionThe findings suggest the possibility that tDCS’s beneficial effects on neuropathic pain may be due, at least in part, to the changes it produces in Glx/Cr and NAA/Cr levels in the ACC. Additional research with larger samples sizes and a control group to evaluate this possibility is warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call