Abstract

This paper evaluates the effects of topology and relative density of helmet lattice liners on mitigating Traumatic Brain Injury (TBI). Finite Element (FE) models of new lattice liners with prismatic and tetrahedral topologies were developed. A typical frontal head impact in motorcycle accidents was simulated, and linear and rotational accelerations of the head were recorded. A high-fidelity FE model of TBI was loaded with the accelerations to predict the brain response during the accident. The results show that prismatic lattices have better performance in preventing TBI than tetrahedral lattices and EPS that is typically used in helmets. Moreover, varying the cell size through the thickness of the liner improves its performance, but this effect was marginal. The relative density also has a significant effect, with lattices with lower relative densities providing better protection. Across different lattices studied here, the prismatic lattice with a relative density of 6% had the best performance and reduced the peak linear and rotational accelerations, Head Injury Criterion (HIC), brain strain and strain rate by 48%, 37%, 49%, 32% and 65% respectively, compared to the EPS liner. These results can be used to guide the design of lattice helmet liners for better mitigation of TBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.