Abstract
Abstract The effects of tire properties and their interaction with the ground and the suspension system on vehicle dynamic behavior was studied using a newly developed finite element analysis method. This analysis method used the explicit nonlinear dynamic code LS-DYNA as a solver and contained finite element models for both the vehicle body structure and subsystems like chassis/suspension. The case presented in this paper is curb impact. Different tire properties such as tire/wheel assembly mass, tire stiffness, tire inflation pressure, tire size, etc., as well as different curb heights, were used with the same vehicle body and suspension system. Simulation results of the impact forces, wheel center jumps, and vehicle body roll/pitch angles at impact are compared for different parameters of the tires and the curb. The analyses presented in this paper provided an accurate and practical method for tire and vehicle dynamics analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.