Abstract

Cell sheet technology is a new strategy in tissue engineering which could be possible to implant into the body without a scaffold. In order to get an integrated cell sheet, a light-induced method via UV365 is used for cell sheet detachment from culture dishes. In this study, we investigated the possibility of cell detachment and growth efficiency on TiO2 nanodot films with RGD immobilization on light-induced cell sheet technology. Mouse calvaria-derived, preosteoblastic (MC3T3-E1) cells were cultured on TiO2 nanodot films with (TR) or without (TN) RGD immobilization. After cells were cultured with or without 5.5 mW/cm2 UV365 illumination, cell morphology, cell viability, osteogenesis related RNA and protein expression, and cell detachment ability were compared, respectively. Light-induced cell detachment was possible when cells were cultured on TR samples. Also, cells cultured on TR samples showed better cell viability, alongside higher protein and RNA expression than on TN samples. This study provides a new biomaterial for light-induced cell/cell sheet harvesting.

Highlights

  • Tissue engineering, in which cells play a fundamental role, is responsible for tissue repair [1]

  • The most common method for harvesting cells is by enzymatic treatment, wherein extracellular matrix (ECM) proteins are digested by trypsin, resulting in the release of cultured cells from culture dishes

  • We found that both cell sheets showed Cadherin existence, while cell sheets cultured on TR samples exhibited a stronger fluorescence signal than those on TN samples extracellularly

Read more

Summary

Introduction

In which cells play a fundamental role, is responsible for tissue repair [1]. The most common method for harvesting cells is by enzymatic treatment, wherein extracellular matrix (ECM) proteins are digested by trypsin, resulting in the release of cultured cells from culture dishes This approach can damage important transmembrane proteins such as cytoskeletal elements, signaling molecules, and receptors [2]. As has been previously demonstrated, ECM proteins adhere onto hydrophobic surfaces, as opposed to hydrophilic surfaces [4] in which the temperature-induced cell harvest method has been developed. This method could be used to harvest single cells or a layer of confluent cells, and it has a less damaging effect than enzymatic treatment because it preserves ECM and transmembrane proteins [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call