Abstract

The effects of time delay on stochastic resonance (SR) in a bistable system with time delay, correlated noises and periodic signal are studied by using the theory of signal- to-noise ratio (SNR). The expression of the SNR is derived under the adiabatic limit and the small delay time approximation. It is found that: (i) For the case of no correlations between multiplicative and additive noise, the delay time τ can enhance the SNR as a function of the multiplicative noise intensity α and it can restrain the SNR as a function of the additive noise intensity D; (ii) For the case of correlations between multiplicative and additive noise, τ can induce a minimum and maximum in curve of the SNR as a function of α, and can intensively restrain the SNR as a function of the D and there is a critical value of delay tim τc = 0.1 in the height of the SNR peak with change of τ , i.e., when τ takes value blow τc ,t he τ boosts up the SNR as a function of the strength λ of correlations between multiplicative and additive noise, however, when τ takes value above τc ,t heτ restrains that.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.