Abstract
This paper seeks to examine the dynamic growth of a single void in an elastic–plastic medium through analytical and numerical approaches. Particular attention is paid to the instability of void growth, and to the effects of inertia, thermal softening and heat conduction. A critical stress is known to exist for the unstable growth of voids. The dependence of this critical stress on material properties is examined, and this critical stress is demonstrated to correspond to the lower limit for the ductile spall strength in many materials. The effects of heat conduction on the dynamic growth of voids strongly depend on the time and length scales in the early stages of the dynamic void growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.