Abstract

Photochemical and photophysical data are reported for a series of fac-[Mn(CO)(3)(phen)(Im-R)](SO(3)CF(3)) complexes, where phen is 1,10-phenanthroline and Im is imidazole. Intraligand and metal-to-ligand charge transfer (MLCT) transitions are observed in the electronic absorption spectra of these complexes and are sensitive to the nature of the ligand substituent. At room temperature the emission spectra show a clear progression from broad structureless MLCT to highly structured pi-pi* emission on going from R = -H, -CH(3), -C(6)H(5), to -Metro, where Metro is 2-methyl-5-nitroimidazole. Even at low temperatures the latter complexes show only the pi-pi* emission. The trend in the photophysical properties found in the emission spectra parallels the changes in the photochemical properties with the electron-donating or electron-withdrawing power of the substituent on the imidazole ligand. Although MLCT irradiation of the complexes with R = -H, -CH(3) leads to the mer-[Mn(CO)(3)(phen)(Im-R)](+) isomers, the complexes with the imidazole ligand substituted by -C(6)H(5) or -Metro release the Im-R ligand and produce the stereoretentive fac-[Mn(CO)(3)(phen)(S)](+) complexes. The stereochemical fate and mechanistic implications of the photolysis reactions are discussed in terms of the nature of ligand substitution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.