Abstract

Despite its widespread use, much is left to understand about the repercussions of parent artery temporary clipping in neurosurgery. This study seeks a better comprehension of the subject by aiming at the online measurement of brain tissue oxygen pressure (PbtO2) during such events. This was a prospective observational study. Patients submitted to surgery for middle cerebral artery aneurysms (both ruptured and unruptured) were continuously monitored under Intensive Care Monitoring+ software, in order to obtain temporal (downstream) PbtO2 levels while temporary clips were applied. Separate PbtO2 curve events were identified, extracted, and processed. These were studied for assessing intraindividual and interindividual variability and the potential impact of repeated clipping and previous aneurysmal rupture. Eighty-six temporary clippings (from 20 patients) were recorded with a mean duration of 140.8 (41- 238) seconds. Temporary arterial occlusion at the M1 segment of the middle cerebral artery produced specifically shaped trajectories, characterized by a preclipping PbtO2 level, rapid downward sigmoid-shaped curve, succession of progressively angled slopes, and lower plateau. The steepest slope of the curve correlated strongly with PbtO2 range (P < 0.001, r= 0.944). These features were highly reproducible only intraindividually and did not vary significantly with repeated clippings. The effects of temporary arterial occlusion on temporal lobe oxygenation demonstrate a high degree of singularity, highlighting the potential benefits of assessing individual available collateral circulation intraoperatively. The "PbtO2 steepest slope" predicted the severity of PbtO2 decrease and was available within the first minute.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call