Abstract

Increased environmental temperature is one of the most frequent stresses effecting metabolic rate in herbivorous insect species. Our goal was to compare the influence of increased environmental temperature and induced thermotolerance on the activity of midgut phosphatases and brain tissue hsp70 concentration in 5th instar Lymantria dispar larvae originating from an unpolluted and polluted forest. Induced thermotolerance (larval pre-treatment at high, sub-lethal temperature) increases the species ability to overcome the negative effects of thermal stress, therefore we monitored the effect of this regime in larvae originating from both forests. Thermal regimes in this experiment predominantly influenced the alkaline phosphatases activity and it was affected by temperature, population origin, and their combined effect. Total acid phosphatases activity was changed only by the joint effect of temperature and population origin. Brain hsp70 concentration was under a significant individual and joint effect of temperature and population. In both populations, brain tissue hsp70 concentration and alkaline phosphatases activity should be taken under consideration as a battery with biomarker potential for thermal stress in L. dispar larvae as a bioindicator species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.