Abstract

SUMMARYLeaf growth of nine varieties of sugar beet (Beta vulgaris L.) was studied at constant temperatures of 7, 11, 15 and 20·C, using generalised logistic curves fitted to the data to estimate the parameters of growth. The rate of leaf appearance increased linearly with temperature and was the same in all varieties. There were differences between varieties in the weighted mean rates of expansion of leaf area per plant (Ā), the temperature coefficient of Ā and the leaf area duration (D); these differences were caused more by differences in rates of expansion and final sizes of individual leaves than by differences in rates of leaf production. The growth of the first six leaves produced by each plant was examined in detail. The greater size of successive leaves of plants and genotypic differences between comparable leaves were more attributable to differences in the rate than differences in the duration of leaf expansion. Increasing temperatures increased leaf size because they accelerated the rate of expansion more than they shortened the duration of the expansion phase. It is inferred that all effects arose through differences in the initial sizes of leaves before they unrolled from the shoot apex. Dry matter production was proportional to D but was partitioned more to the storage root at the colder temperatures. This may have been related to the differential effects of temperature on cell division and expansion and the relative contribution of these two processes to the final sizes of the leaves and storage root.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call