Abstract

The effects of different temperatures and diets experienced during distinct life stages are not necessarily similar. The silver-spoon hypothesis predicts that developing under favorable conditions will always lead to better performing adults under all adult conditions. The environment-matching hypothesis suggests that a match between developmental and adult conditions will lead to the best performing adults. Similar to the latter hypothesis, the beneficial-acclimation hypothesis suggests that either developing or acclimating as adults to the test temperature will improve later performance under such temperature. We disentangled here between the effect of growth, adult, and mating conditions (temperature and diet) on reproduction in the red flour beetle (Tribolium castaneum), in reference to the reproduction success rate, the number of viable offspring produced, and the mean offspring mass 13 days after mating. The most influential stage affecting reproduction differed between the diet and temperature experiments: adult temperature vs. parental growth diet. Generally, a yeast-rich diet or warmer temperature improved reproduction, supporting the silver-spoon hypothesis. However, interactions between life stages made the results more complex, also fitting the environment-matching hypothesis. Warm growth temperature positively affected reproduction success, but only when adults were kept under the same warm temperature. When the parental growth and adult diets matched, the mean offspring mass was greater than in a mismatch between the two. Additionally, a match between warm adult temperature and warm offspring growth temperature led to the largest offspring mass. These findings support the environment-matching hypothesis. Our results provide evidence for all these hypotheses and demonstrate that parental effects and plasticity may be induced by temperature and diet.

Highlights

  • Climate has a major effect on all aspects of animal life, from development, through behavior, to reproduction [1,2,3,4]

  • The significant parental growth × adult temperature interaction indicates that beetles developing under the higher temperature differed strongly in their reproduction success rate, depending on the adult temperature: while high adult temperature almost always led to the production of viable offspring, transfer to the lower temperature as adults led to almost no reproduction (Fig 2)

  • For those pairs that produced viable offspring, adult temperature was the most important factor determining the number of offspring (F1,88 = 50.08, P < 0.0001), followed by a milder effect of parental growth temperature (F1,88 = 4.79, P = 0.031; Fig 3A and 3B)

Read more

Summary

Introduction

Climate has a major effect on all aspects of animal life, from development, through behavior, to reproduction [1,2,3,4]. Because climate changes on both a seasonal and daily basis, animals must contend with thermal fluctuations and unfavorable temperatures. As winter approaches in temperate regions, insects accumulate anti-freeze materials, such as anti-freeze and heat shock proteins [6, 7]. These processes are referred to as "acclimation": the ability to modify behavioral, physiological, or morphological traits in order to adaptively respond to a thermal, often stressful, change [8, 9]. When the access to food is renewed, animals often demonstrate compensatory feeding, which incurs various costs [12,13,14]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call