Abstract

When a liquid drop impacts a solid surface, the contact periphery at first expands more quickly than the compression wavefronts in either liquid or solid. The liquid behind the shock envelope is compressed and high pressures of order ρCV result, where ρ is the density of the liquid at ambient pressure, C the shock velocity in the liquid, and V the impact velocity. At a later stage, the shock envelope overtakes the contact periphery and a jetting motion, which releases the high pressures, commences. The magnitude and duration of the high pressures are critical in explaining the damage mechanisms and erosion processes caused by liquid impact. The experiments described in this paper use the two-dimensional gel and photographic techniques developed for visualizing the shocks, recording the onset of jetting, and measuring jet velocities. This particular study is primarily concerned with the effect of target compliance on the early stages of impact. It is shown that the greater the target compliance, the longer the delay before jetting commences. Two critical conditions are shown to be useful in discussing jetting. The first defines when the shock envelope overtakes the contact periphery and liquid can ‘‘spall’’ into the air gap. The second defines when this spalled liquid appears ahead of the contact periphery as an observable jet. Both these conditions are investigated and the implications of the results for erosion damage are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.