Abstract

The multi-scale interaction between combustion and turbulence is of great importance in modifying the small-scale flame structure and kinetic energy, especially in swirling flames under practical conditions. In the present study, direct numerical simulation of swirling partially premixed flame is conducted within a model combustor under gas turbine conditions. The reactive flow is compared to the corresponding non-reactive one to investigate the influence of combustion on the scaled kinetic energy transport. Kinetic energy spectra demonstrate that the turbulent kinetic energy is reduced in the dissipative subrange while enhanced in the energetic one by the flame. The critical scale is located in the inertial subrange and close to the estimated turbulent flame thickness. Filtering analyses show that the resolved-scale kinetic energy is augmented by the increased large-scale pressure-gradient work in the reactive flow, while the subgrid-scale kinetic energy is attenuated by the enhanced small-scale viscous dissipation. The backscatter prevails in the heat release regions when the filter size is larger than the laminar flame thickness, and this effect decreases with the swirling flow developing downstream. The interaction between the kinetic energy flux and the local dilatation as well as the subgrid-scale pressure-gradient work is also investigated to achieve a comprehensive understanding about the effects of combustion on the backscatter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call