Abstract

Nitinol is a commonly used material in the medical device industry. However, correlations between surface processing of nitinol and in-vivo corrosion has yet to be established. Elucidating the link between in-vivo corrosion and pre-clinical characterization can aid in improved prediction of clinical safety and performance of nitinol devices. We addressed this knowledge gap by fabricating nitinol stents to possess distinct surface properties and evaluating their corrosion susceptibility both in-vitro and after six months of in-vivo exposure. Relationships between stent processing, surface characterization, corrosion bench testing, and outcomes from explanted devices are discussed. These findings highlight the importance of surface characterization in nitinol devices and provide in-vitro pitting corrosion levels that can induce in-vivo corrosion in nitinol stents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.