Abstract

Computational modeling of the behavior of articular cartilage is important in order to improve the understanding of disease processes such as arthritis, and the suitability of biomaterials in surgical treatment. In previous computational studies, the cartilage surface of axisymmetric models was assumed to be flat in order to evaluate the cartilage behavior. This assumption was inappropriate since the synovial joint possessed curvature geometrical shape and may contribute to inaccurate results. Therefore, this study aims to examine the effects of the cartilage surface curvature to the cartilage behavior in indentation test using finite element analysis. Axisymmetric biphasic poroelastic finite element models of flat and various cartilage surface radii, including both concave and convex shapes of the curve, were generated to simulate creep indentation test in order to investigate possible effect to the contact stress and pore pressure of the cartilage. Based on the results, the smaller cartilage surface of 10mm radius produced higher difference of the cartilage behavior where it generated 39% difference in pore pressure and 6% difference in contact stress, compared to the flat cartilage. This could indicate that the cartilage curvature does affect the cartilage behavior in indentation test particularly the pore pressure of cartilage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.