Abstract

Li0.7[Li1/12Ni1/12Mn5/6]O2 and Li0.7[Li1/12Ni1/12Mn5/6]O2-ySy (y=0.1, 0.2, 0.3) powders were synthesized by using a sol-gel method. As-prepared samples showed typical rhombohedral O3 layered structure. The shape of the initial discharge curve for the samples was almost equal to that of the layered structure. However, the electrode materials were transferred from layered to spinel structures with cycling. At the first cycle, Li0.7[Li1/12Ni1/122Mn25/6]O2 and Li0.7[Li1/12Ni1/12 Mn5/6]O1.9S0.1, Li0.7[Li1/12Ni1/12Mn5/6]O1.8S0.2, and Li0.7[Li1/12Ni1/12Mn5/6]O1.7S0.3 delivered the discharge capacities of 238, 230,224, and 226 mAh/g, respectively, with their capacity fading rates of 0.34, 0.21, 0.12, 0.25%/cycle, respectively. The partial substitutions of Ni and S for Mn and O in Li0.7[Li1/12Ni1/12Mn1/12]O2 significantly enhanced the electrochemical properties of the lithium manganese oxide materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.