Abstract

Urban streets provide environment for road running. The study proposes a non-parametric approach that uses machine learning models to predict road running intensity. The models were developed using route check-in data from Keep, a mobile exercise application, and street geographic information data in Beijing’s core district. The results show that blue space and trail continuity are the most important factors in improving road running intensity. There is an optimum design value for the sky openness and the street enclosure, which need to be balanced with shade while meeting the light of the road. And it is also important to provide appropriate visual permeability. Furthermore, unlike daily activities, it was found that higher function mixture and function density did not have significant positive effects on the road running intensity. This study provides empirical evidence on road running and highlights the key factors that planners, landscape architects, and city managers should consider when design running-friendly urban streets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.