Abstract

Microplastic (MP) is ubiquitously found in aquatic environments and poses a significant environmental challenge. However, what controls MP deposition and burial in river networks is unclear, especially when sediments are in motion. This study addresses this gap by examining the impact of streambed motion and particle size on microplastic deposition in sandy streambeds. Experiments were conducted in a stainless-steel flume (650 cm x 20 cm) filled with 25 cm of silica sand (D50 = 0.6 mm) and water (depth = 12 cm). A centrifugal pump circulated the water and maintained a stream water velocity of 0.53 m/s. Polypropylene (PP) fibers at lengths of 25 μm, 100 μm, 200 μm, and 2000 μm, and carboxylated Polystyrene (PS) microspheres (diameter of 0.5 μm, 1 μm, and 5 μm) were added to the stream water and their concentration in the water was measured over three days. The deposition of the MP was inferred from the decline of MP in the streamwater. A control experiment was conducted by repeating the same experiments but without sediments. The flow in the flume generated ripples, which move at a speed of approximately 4 m/h. Bed motion dominated the exchange flux of streamwater and particles with the sediments. MP concentrations declined rapidly in the first two hours after the addition due to the exchange that led to a mixing of streamwater with particle-free pore water. After the relatively fast initial decline in MP, further reduction in MP concentrations in the water occurred due to deposition. Different deposition dynamics were observed for fibers and microspheres. Buried MP particles were partly resuspended during the scouring of the ripples during their movement. It was found that  PP fibers 25 μm and 0.5 μm spheres were more mobile in the sediment than longer fibers and larger spheres, respectively. We explain their higher deposition than larger particles by a potential advective movement through the porous media, leading to their transport below the scour zone. PP fibers ≥ 100 μm were immobile within the sediment, and thus, their deposition was only due to burial by the ripple motion. Our results highlight the significant influence of moving sediments on MP and the importance of considering MP size for catchment-scale modeling to predict MP fluxes to oceans. Deposition locations are also likely to be affected by bed motions and thus should be considered when developing effective sampling strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.