Abstract
A "patch-and-stitchrdquo localization algorithm divides the network into small overlapping subregions. Typically, each subregion consists of a node and all or some of its neighbors. For each subregion, the algorithm builds a local map, called a patch, which is actually an embedding of the nodes it spans in a relative coordinate system. Finally, the algorithm stitches those patches to form a single global map. In a patch-and-stitch algorithm, the stitching order makes an influence on both the performance and the complexity of the algorithm. In this paper, we present a formal framework to deal with stitching orders in patch-and-stitch localization algorithms. In our framework, the stitching order is determined by a stitching scheme and the stitching scheme consists of a stitching policy and a potential function. The potential function is to predict how well a patch will be stitched if patches are stitched according to a given partial order. The stitching policy is a mechanism that determines the stitching order based on the predictions by the potential function. We present various stitching schemes and evaluate them through simulations. In addition, we apply the patch-and-stitch strategy into the anchor-based localization and propose a clustering-based localization algorithm. A potential function is used to partition the network into clusters each of which is centered at an anchor node. For each cluster, a cluster map is constructed via the anchor-free localization algorithm. Then, those cluster maps are combined to form a single global map. We propose a stitching technique for combining those cluster maps and analyze the performance of the algorithm by simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.