Abstract

Adipose-derived stem cells (ADSCs) represent a valuable source of stem cells for regenerative medicine, but the loss of their stemness during in vitro expansion remains a major roadblock. We employed a microgravity bioreactor (MB) to develop a method for biomaterial-free-mediated spheroid formation to maintain the stemness properties of ADSCs. ADSCs spontaneously formed three-dimensional spheroids in the MB. Compared with monolayer culture, the expression levels of E-cadherin and pluripotent markers were significantly upregulated in ADSC spheroids. Spheroid-derived ADSCs exhibited increased proliferative ability and colony-forming efficiency. By culturing the spheroid-derived ADSCs in an appropriate induction medium, we found that the multipotency differentiation capacities of ADSCs were significantly improved by spheroid culture in the MB. Furthermore, when ADSCs were administered to mice with carbon tetrachloride-induced acute liver failure, spheroid-derived ADSCs showed more effective potentials to rescue liver failure than ADSCs derived from constant monolayer culture. Our results suggest that spheroid formation of ADSCs in an MB enhances their stemness properties and increases their therapeutic potential. Therefore, spheroid culture in an MB can be an efficient method to maintain stemness properties, without the involvement of any biomaterials for clinical applications of in vitro cultured ADSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.