Abstract
The light emitted from the region close to the tip of an emitting liquid metal ion source has been observed. It is shown that at high currents the light intensity rises almost as the cube of the current, but that the optical emission also depends on the source characteristics. A model based on the break-up of charged droplets is proposed to account for these results, thermal evaporation being found to be insignificant. Measurements of the effects of source temperature on light emission are also presented. From these measurements it is demonstrated that field ionisation cannot be responsible for the distortion of the total ion energy distribution seen at elevated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.