Abstract

A series of recent experiments has examined the auditory localization of a nearby (<1 m) sound source under four conditions: (1) a fixed-amplitude condition where loudness-based distance cues were available; (2) a monaural condition where the contralateral ear was occluded by an ear-plug and muff; (3) a high-pass condition where the stimulus bandwidth was 3 Hz–15 kHz; (4) a low-pass condition where the stimulus bandwidth was 200 Hz–3 kHz. The results of these experiments were compared to those of a previous experiment that measured localization performance for a nearby broadband, random-amplitude source [Brungart et al., J. Acoust. Soc. Am. 102, 3140(A) (1997)]. Directional localization performance in each condition was consistent with the results of previous far-field localization experiments. Distance localization accuracy improved slightly in the fixed-amplitude condition, especially near the median plane, but was severely degraded in the monaural condition. Distance accuracy was also found to be highly dependent on the low-frequency energy of the stimulus: in the low-pass condition, distance accuracy was similar to that in the broadband condition, while in the high-pass condition, distance accuracy was significantly reduced. The results suggest that low-frequency interaural intensity differences are the dominant auditory distance cue in the near-field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.