Abstract

It is well established that solar irradiance greatly influences tree metabolism and growth through photosynthesis, but its effects acting through individual climate metrics have not yet been well quantified. Understanding these effects is crucial for assessing the impacts of climate change on forest ecosystems. To describe the effects of solar irradiance on tree growth, we installed 110 automatic dendrometers in two old-growth mountain forest reserves in Central Europe, performed detailed terrestrial and aerial laser scanning to obtain precise tree profiles, and used these to simulate the sum of solar irradiance received by each tree on a daily basis. Generalized linear mixed-effect models were applied to simulate the probability of growth and the growth intensity over seven growing seasons. Our results demonstrated various contrasting effects of solar irradiance on the growth of canopy trees. On the one hand, the highest daily growth rates corresponded with the highest solar irradiance potentials (i.e. the longest photoperiod). Intense solar irradiance significantly decreased tree growth, through an increase in the vapor pressure deficit. These effects were consistent for all species but had different magnitude. Tree growth is the most effective on long rainy/cloudy days with low solar irradiance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.