Abstract

Extraterrestrial solar irradiance spectra detail the solar energy distribution over wavelengths, and numerous solar irradiance models are available within the remote sensing community. However, reference spectra may differ widely owing to differences in solar activity, measurement instruments and calibration. Six widely referenced solar spectra were selected in this work to examine their differences and the impacts of these differences on calculations of narrow band top-of-atmosphere reflectance using MERIS and Hyperion hyperspectral sensor spectral configurations. Mean solar exoatmospheric irradiance (MSEI) was computed using the different solar irradiance models and spectral response functions of the MERIS and Hyperion hyperspectral sensors. Then, the effects of MSEI on top-of-atmosphere (TOA) reflectance and the normalized difference vegetation index (NDVI) and atmospherically resistant vegetation index (ARVI) were investigated. The results show that the six selected solar irradiance models have significant differences from 350 to 2500 nm, which in turn result in differences in the MSEI derived from MERIS and Hyperion observations. These differences have a less significant effect on the TOA reflectance in the visible and near-infrared bands and on NDVI. However, the differences result in large differences in TOA reflectance in the infrared bands and in ARVI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.