Abstract

In field tests we have observed year-to-year differences in the severity of the effects of soil compaction on nodulation and growth of common bean; these differences appeared to be related to the amount of rainfall during the growing season. We decided to use better controlled conditions in the greenhouse, and extend the scope of the study to another legume crop and a different soil type, in order to investigate the hypothesis that copious water supply alleviates the adverse effects of soil compaction on nodulation and plant growth.The effects of two levels of soil compaction and of high and low water supply on the growth and nodulation of common bean and soybean were investigated in separate pot tests using a Fox sandy loam and a Brookston clay loam soil.Root growth of both species was severely restricted by dry compacted conditions. Plant growth as a whole was clearly reduced by both increased compaction and by reduced water supply, presumably mediated by the effects on root growth. The effect of reduced water supply was more severe in the highly compacted pots, and more severe in the clay loam than in the sandy loam.In the sandy loam, low moisture reduced nodule numbers and weights in both species, while increased bulk density reduced the numbers of nodules but not the dry weights. In the clay loam, nodule weights and numbers were very low, presumably, owing to high levels of nitrate, which may have resulted from mineralization of soil organic matter during storage.A generous supply of water obviously alleviated some of the adverse effects of soil compaction on plant growth. This is in general agreement with results of earlier field trials, where severity of the effects of soil compaction varied with the quantity of rainfall. Key words: Soybean, common bean, soil compaction, soil moisture, nodulation, bulk density

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.