Abstract

In this study, we characterize and consider the effects of slope length and slope gradient on the size distributions of loess slides. To carry out this study, we employ data on 275 loess slides within Zhidan County, Central Loess Plateau, China. These data were collected in the field and supplemented by the interpretation of remote sensing images. Both the field observations and slope stability analysis show that loess slide size increases with the slope length. Slide sizes is significantly correlated with slope length, showing a power law relationship in both cases. However, the simulation results show that slope gradient is not associated with loess slide size. The main part of the link between slope gradient and slide size seen in the observations is only apparent, as indicated by the strong connection between slope gradient and length. Statistical analysis of the field observations reveals that slope gradient decreases with increasing slope length, and this correlation interferes with the potential relationship between landslide sizes and slope gradient seen in the field observations. In addition, the probability densities of the areas of loess slides occurring on slopes of different slope lengths are determined using kernel density estimation. This analysis shows that slope length controls the rollover of the frequency-size distribution of loess slides. The scaling exponent increases with slope length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call