Abstract

Based on crystal plasticity theory, plate specimens with a cooling hole were adopted to investigate the stress distribution and crystallographic slip characteristics, the effects of crystallographic orientations taken into consideration. The slant angles are 0°, 15°, 30° and 45°. The results show that severe stress concentrations and high stress gradients present at the cooling holes. Stress distribution changes significantly with different slant angles and crystallographic orientations. Slip bands advancing to specific directions initiate around the holes and the characteristics of the slip band vary with slant angles. Four apparent maximum values occur along the hole in the three orientations and the locations of the maximum values are much dependent on the slant angles. The influences of slant angle on the activating law of the slip systems are remarkable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.