Abstract

The energy demand for crude oil (CO) has increased globally which encourages the growth in the petroleum industry worldwide. When CO is transported through a pipeline over long distances, due to the change in environmental circumstances, the flow behavior of CO also changes. To improve the flowability of CO through the pipeline, a better understanding of the rheological behavior of CO is very important. In this paper, several experiments were conducted to improve the flowability of CO through pipeline transportation. Dilution of CO with its products like Superior Kerosene Oil (SKO) was selected as it improves the CO flowability through the pipeline and is economically affordable. In this study, the effect of SKO on oAPI gravity, Pour Point, Gel Point, Viscosity Gravity Constant, and rheological parameters were studied for the CO of Upper Assam Basin, Assam. SKO was mixed with CO in different ratios to examine the effect of SKO on it. The results obtained showed that with the addition of SKO, oAPI increases, the minimum limit of attaining paraffinic nature of CO samples can be determined, heavier CO may not always have high Pour Point and Gel Point. The variation in yield stress of CO with SKO was also observed. Hershel-Buckley Model (HBM) was used and from the three parameters of HBM, the shear-thinning or shear thickening behavior of CO was determined. Therefore, this paper attempts to study the flow behavior of CO and also to identify the % of SKO required for improving their flowability through the pipeline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.