Abstract

Co3O4 mesoporous nanowires with average single crystalline grain sizes of about 8 nm, 12nm, 25 nm, and 45 nm were synthesized by sintering of microwave-assisted hydrothermal processed belt-Co(OH)2 precursors at 300–500 °C for 2 h. Microstructure analysis was conducted by x-ray diffraction, x-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), field emission SEM (FESEM), transmission electron microscopy (TEM), and high resolution TEM (HRTEM) to confirm the composition, structure, and orientation in the nanowires. Systematic magnetic measurements have also been conducted on the nanowires. It was found that the size and orientation have significant effects on the magnetic and exchange bias properties. The interesting finding was made that room temperature ferromagnetism appeared at 350 °C in the high orientation samples. Systematic comparison and analysis of the relationships among the grain size, microstructure, orientation (texture), surface electric structure (O vacancies), and defects with magnetic properties (ferromagnetism, coercive field, exchange bias, etc.) are presented in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.